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ABSTRACT
J 5217 :

Formulas are derived giving the second-order
secular and long-period effects on the orbit of the satellite
of an oblate planet. The presentation is in terms of the

standard osculating elements and their averages.

The derivation involves the second-order method
of averages for solving nonlinear differential equations.
In the application to the present problem, this second-
order theory can be very cumbersome. However, by intro-

ducing an auxiliary function, , it has been possible to
simplify the equations to a manageable form. 4ZZX

.  INTRODUCTION

The method of averages developed by N. M. Krylov and N. N. Bogoliubov in the study of nonlinear
oscillations has been generalized by Bogoliubov and J. Mitropolsky in their treatise Asymptotic Methods
in the Theory of Nonlinear Oscillations (Ref. 1). For the treatment of oscillating systems, the methods
developed by these authors have not as yet been fully exploited by astronomers. For example, using the
averaging method in satellite theory the secular and long-period rates of the osculating elements can be
expressed through second-order terms in the small parameter, with coefficients exact in eccentricity, thus

avoiding expansions in powers of the eccentricity.

The labor involved in the derivations is lengthy but is believed to be considerably simpler than, for
example, the von Zeipel method used by Brouwer, Kozai, and others (Refs. 2, 3). As far as can be ascertained,

the only other attempt at applying the second-order averaging method to celestial mechanics is currently being
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pursued by W. T. Kyner (Ref. 4), whose approach deals directly with the equations of motion rather than with
the canonical form used here. It is believed that a saving of labor is effected and that symmetries are better
exhibited by the canonical approach. As of the present time, Kyner’s second-order results (referred to in

Ref. 4) have not been available to the authors of this paper.

To check the validity of the results obtained herein, a comparison is made with the formulas of
Petty and Breakwell (Ref. 5). Numerical computations were also performed, but neither check was entirely

satisfactory. These evaluations are discussed in detail in Sections VI and VII.

This paper consists of three parts. In Section Il the averaging procedure is developed and formulas
appropriate for the subsequent analysis are derived. The derivations here are simpler and more straight-
forward than those found in Ref. 1. In Sections III, IV, and V, the theory is applied to a satellite problem of
celestial mechanics, with particular emphasis on the oblateness perturbations. Finally, in Sections VI and

VII, the results are evaluated in terms of other methods, and numerical results are stated.
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Il. THE METHOD OF AVERAGES

We consider the system of nonlinear differential equations

dit . 9
= € X'(x,t) + €“Y(x,1) € <1

dt

i =1,2+«,n 1)

with Xi(x,t) = Xi(x!,x2 ..., x",1), etc., € a small parameter. The independent variable ¢ is such that

Xi(x,t), Y¥(x,1) are periodic in ¢, of period 7, so that Xi(x,t + 7) = X:x,t), Yi(x,t + 7) = Y¥(x,2). We will be
interested only in terms through €2 (second-order perturbation theory). The equations for perturbed Keplerian
orbits can be cast in this form by use of the method of variation of parameters (Ref. 6). Alternatively, such

motion may be described in terms of the Lagrange planetary equations which are already of this form (Ref. 3).

We wish to find 2%(¢),i = 1, 2, -+, n, which satisfy Eq. (1) to within €3 terms. The method of
averages is basically a scheme for separating %*(¢) into two parts, a steady-state or long-period term and a
short-period term. The procedure, following Bogoliubov and Mitropolskyl, is to introduce a smooth set of
variables fi, { =1,2,.--,n, which behave like x* without the short period terms.

We define

et
i

= €A (&) + €2 B (&) 2)

X o= £y e FHUED + €26 (£,0) (3)

in which the F*, G’ are periodic in ¢, of period 7, with no steady-state components, and the 4*, B* are

independent of ¢t. Thus

17 27 R (] (4‘)

It

fOTFi(g,t) dt = f()TGi(§,t) dt = 0 i

1See Ref. 1, Eqs. (24.63) and (24.64).



JPL Technical Report No. 32-482

- -0 (5)

with the &% held constant during the integration.

We wish to detemine the A%, BY, F¥, G such that x* of Eq. (3) will satisfy Eq. (1) to within €3
terms. One advantage of Egs. (2) and (3) over Eq. (1) is that (for satellite lifetime studies) a knowledge of
£5(¢) yields the long-term behavior of 2%(¢), since x%(t) — £1(¢) merely defines the short-period fluctuations
from the average motion. Furthermore, Eq. (3) can be integrated numerically using much larger integration

steps than can Eq. (1).

From Eqgs. (3) and (1) we have

dd  d& oFt  d&e oFt o 0G
—_ = + € + € + €
de dt &S dt ot at
, oF¢ oF* 9G* :
= €AY¢&) + € + e A% + + BY&)
dt 9Ee ot
. i .
= e XD + €2 Fa(&,n) + €2YH& ) (6)

&

neglecting €3 and higher terms and making use of the summation convention. The right-hand side of Eq. (6)

results from a Taylor series expansion about x* = £°.

Equating powers of ¢ yields

. . IF(E,
Xig = aige) 5 &
ot
Vi) + Fieny OS5GN | ey IFUED OCHED) i @)
aze age at
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From Egs. (7) it follows that AN (£) is the steady-state term of X¥(£,t), and 9FF /ot is the periodic

part of Xi(f,t). Thus?2

. 1 T . .
Aig) = — [T X €0 d = X&)
T 0

Fi&,r) = ftX}f(g,t) e = Xi

with X¥(&,0) = Xf)(§) + X;;(é',t), and the integral of Eq. (9} being the indefinite integral of X;;(f,t)

~
involving no constants of integrations, denoted by X".

From Egs. (7) it also follows that

. 1 ) 1 ~ X
Bi(&) = — [ yi&adie— [ Xe
- 0 T 0 afa.

dt

. t ~,
i _ i t Yo X _ ya 9x*
G &) = Y o+ X dt — X5(£) dt
At p 9&e

Returning to Egs. (2) and (3), one notes that

dét . . ). ¢
& eXi(&) + €| YiE) +| X°
dt aga 0

2 The subscript 0 denotes steady-state terms, and the subscript p denotes the purely periodic part of the

functions. In evaluating the integrals (8) and (9) it is assumed that £ is held constant.

(8)

9)

10

(1D

(12)
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S £ ~ o ox ¢ oxi
2t = Fr eX 4+ ef| Y+ X dt -~ Xg(&) dt (13)
Equations (12) and (13) are the basic forms for applying the second-order averaging process. In Section III
the equations for satellite theory will be cast in appropriate form, and the various functions appearing in

Eqgs. (12) and (13) will be evaluated in terms of the orbital elements.
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lll.  EQUATIONS FOR SATELLITE MOTION

The specific problem analyzed here concems satellite motion in the presence of a force field
produced by a slightly distorted mass spheroid. Such a force field has a potential which can be expanded

in spherical harmonics starting with

1
Uz_ﬁ_ﬂ __sin2ﬁ 4 e (14)

r r3 3

Taking the equatorial plane of the spheroid as the reference plane, the latitude is 3 and p is the gravity
constant. The theory will be developed here for the J-term only, neglecting all higher-order terms. However,
the solution to the corresponding satellite motion will be carried to order J2, in the sense of the second-order

averaging method as explained in Section Il above.

Following Brouwer (Ref. 2), Delaunay variables are introduced as follows:

L = (,bLOL)l/z ! = mean anomaly
G = L(1-e% g = argument of pericenter
H = G cosl h = longitude of ascending node

In tems of these variables, the Hamiltonian is given by

2

4 2 3 2 3
] 1 3 H a 3 3 H a
F='u—— £ -+ — — }V— 4+ — = — — | — cos (2g+ 2f)

2L 2 3L6 2 2 G2 3 2 2 G2/ 3

2 4
]
- RLGHLY) (15)

L2 366

where R is given explicitly by Eq. (35), and the equations of motion are
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dL oF dl aF
dt ol dt oL
dG oF d oF
o of e __ 2 (16)
dt dg dt oG
dH oF dh oF
dt oh dt oH

Here, a, e, and [ are the usual osculating elements, and fis the true anomaly.

The use of canonical variables with the corresponding simplicity of the equations of motion as
exhibited in Eqs. (16) is essential to the present development from a practical standpoint. For, without such

simplicity, the functions appearing on the right-hand side of Egs. (12) and (13) become excessively complex.

The potential (Eq. 14) leads to a Hamiltonian (Eq. 15) independent of % and ¢ This fact further
simplifies the calculation. However, the procedure would still apply were the Hamiltonian to contain £ and ¢,
provided only that ¢ entered as a slowly varying term. All the short-period variations must be the result of

terms involving the mean anomaly [ and its multiples.

Equations (16) should now be rewritten with / as independent variable (corresponding to the inde-
pendent variable ¢ of Eq. 1). This transformation is effected by dividing the dl/dt equation into each of the

remaining equations of the set (16).

If
] 2
e = H (17)
3
then
dl 2 L3 R
— = el l] - € — — (18)
dt L3 G% oL
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and to order €2 the equations of motion reduce to

d L3 OR L% GR OR
_E_:e————+52———-— (19)
dl G® al G2 a1 oL
dG L3 OR L® OR IR
—— e — — + & — — — (20)
dl GS g G2 g oL
dH L3 4R L® OR 4R
—_— - — — 4+ €2 — 2D
dl G® ok G2 9r oL
d d R L% OR 9 R
2 e L S\ 22 T2 (22)
dl G \ G° G5 oL 9G \ G°
dh L3 oR L2 OR R
e m me g2 (23)
dl G® oH G2 oH oL

In comparing with Eq. (1), the dependent variables o = xl ..., x° are identified with L, G, H, &

and A, respectively, and the independent variable is [.

If in dealing with some other potential, ¢ appears explicitly in F, or if it is desired to relate the

orbit to time, then it is necessary to return to Eq. (18). By introducing the slowly varying variable 7

1 ¢
m=t~-— [L3d (24)
#2 0

the value of ¢ can be derived from the equation

d L% 4R L® IR
e Zp €2 — (25)
dl w268 4L w2612\ aL

Here, 7) is to be considered as a sixth dependent variable.
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The final step in the formulation of the equations is the identification of the functions X/ and Y/.

Comparison of Eq. (1) with Egs. (19) to (25) shows that

3 6
X1=XL=L_ﬁ y1=yL=_I;f§_f£
6o ol 612 ol aL
3 6
X2=XG:_L__‘Z{_ y2=y0=i_,a££li
GS g G2 9g 4L
3 6
X3=XH=_L_2?_ y3=yH:_L_iR_§§
G5 ok G2 on aL
(26)
6
X4=Xg=_L3i_R_ y4=Yg=__L__ai_a _R_
G \ b G5 9L oG \ G°
3 6
x5 oph oo R ys _yh o L R OR
G8 OH G2 oH oL
L% OR L® R\
/,L206 oL /1.2612 aL

Section IV will be devoted to simplifying the form of Eqs. (12) and (13) after making the substitutions
indicated by Eqgs. (26).

10
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IV. EQUATIONS FOR AVERAGED DELAUNAY VARIABLES

The variables will be considered one at a time. For L, the equation corresponding to Eq. (12) for

j = 1 may be written®

axt
dL ~.
= eXé + €2 Y(l)‘ + | X ———-_p. (27)
dl ax* [,
Using the identification from Eq. (26), it is seen that
L3 1 dR
) p—— — dl =0 (28)
G T o 9

since the integration is effected holding the variables L, G, H, g, and k constant, and since R is assumed

to be periodic in .

The terms in brackets reduce to

L | o0, + B bb + by + PP+ PPy~ PePer — PuPn S (B bnde  (29)
m

where

= — (30)

and subscripts denote partial derivatives.

3See footnote 2. Also, repeated index denotes use of summation convention.

n
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In Eq. (29), the terms combine with the help of the following relations:

T

1 T
- — f bty dl = - By (31)
0

1 1
(#), - — f Bty Al = — @)
0

showing that the first and third terms cancel. Similarly the fourth and sixth terms cancel and the fifth and

seventh terms cancel, leaving only the second and eighth terms. However,
d 1
(@) = | — — p?2 )= — 92| =0 (32)

Thus only one term remains in Eq. (27), which reduces to

dL €29 €29 R, IR
- - - (p,0,) = - (33)
dl w? 0 p262 \ oL am /,
It follows from Eq. (33) that
dL
—~ _ 0 (34)
dl

if time (hence also 1) does not appear explicitly in R. Since this is the case for the perturbing function due
to each of the zonal harmonics of an oblate planet, it follows that none of these gives rise to secular or long-

period second-order terms in the semimajor axis.
The remaining part of the analysis will be restricted to the case in which R is due to the second

zonal hamonic for an oblate spheroid. Thus R is determined by Eq. (15), and can be written

R = (L+ecosf)® [4+B cos (25 +2)) (35)

12
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where

1 3 H? 3 4. )
A= —+— — =1-8B=1- — sin?]
2 2 G2 2
. (36)
3 H? 3
B=—\{1-—]=1-4=—_ sin?]
2 G? 2
.

Note that R is independent of & and that time does not appear explicitly. Also,4

1 2 1 63 27 3
Ry = — Rdl = — . (1+ecos f)2Rdf = 4 — 37
o em L3, L3
The equation for determining G is
~ ) ¢4
dG ~,
- ex§ e |vS | xt L (38)
dl Jax 0
The value of Xg is 0 since
L3 9 L 9 | 463
X‘();:___[R]o:__.__.. =0 (39)
G® 9 G¢ o9g \ L3
Using Eq. (26), the terms in brackets of Eq. (38) reduce to
6 3 ~ ~ ~ ~
L ¢g¢L + Z ¢¢g + ¢¢gL + ¢g¢gc + ¢h¢gH - ¢G¢gg - ¢H¢gh
(40)
] 1 d 1 ~ ~
-8 L — | — L3R%| +(¢,0p.) + (&)
312 g G 0 h*H 0
dg | L°G oL 2 0

4Althoug1 the notation requires that averaged variables be identified with a bar, this will not always be done
in the sequel when the meaning is otherwise clear.

13
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in which ¢ is given by Eq. (30). Since ¢ is independent of 4, the last term in Eq. (40) can be omitted.

Write

1 d 3 1, ~
WL, G H, g = — |L*[ — R + (b, 00) (41)
cl213 oL 2 70
0
then Eq. (38) reduces to
dG 0
g X (42)
dl dg

- _ 00 (43)

since R is independent of A.

For g the situation is more complicated, since the term in € is not zero. The rate equation is

d_ ~, an
28 €X§ + e? vg + | X _P (44)
dl ot/
with
g |1 34 1 94 3 5
X§ = -L3 —|— Ry | = — - — — = — [ 2- = sin?] (45)
a6 | ¢ G4 G3 aG c? 2

while the terms of Eq. (44) in brackets reduce to

Ak

Y
aG

14
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Thus, Eq. (44) can be written

d 3 5
2 92 2 sin?1 e—LG\/JG €2 (46)
dl Gt 2
Finally, the & equation is
dh 3H
___=_-—6—L6\/JH62 (47)
dl G°

It may be noted at this point that the equations for the averaged variable may be very simply ex-

pressed in temms of the function

~ ~ 1 9 [ L3¢?
D= eL3¢y+ €2L6 b P + Pty + — —
L3 4L 2 0

Thus, the averaged Delaunay variables satisfy the system of differential equations

dL

— =T

dl

dG dg

2 Cr % _ T,
8

dl dl

dH dh

— =T — = - Ty

dl dl

It remains to evaluate k/lg, \/JG, and l/JH. The first term in Y (Eq. 41) involves the average of 1/2 R2 as

follows:

15
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21 2
1 1 1
2R L. ,f (1+ecos )0 A+Bcos (2 +20) dl
2 0 277 2 0
G3 1 2m 2
T (1+ecosf)4 A+ B cos (2g + 2f)| df
203 2w ),
(48)
G3
= — A%+ — B? 1+3e24+ — &t
2L3 2 8
9 1 9 B2et
= ABe 3+ — e cos 2g + cos 4g
2 32
The second term of  in Eq. (41) is
b b e A (49)
G = TS G T T,
%10 12 8 o G!3 £ /o
But
~ BGS 1 9 4 3 2
RgRG = 3+ — B) +e“|2+ —B] - 64+] 1~ — A | e*| cos 2g
o  2L® 3 3 2
(50)
Be?
- cos 4g
8
and
~ BGS |1 o B 4
RgR = — B + e — + — cos 2g (51)
o L% |2 3 2

16
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Thus
9 5 3 1 5 5B -7 1
Y o= 3- - B+ B2} 4+ 2 -2 B-_"_BZ}e2, Bezc052g . (52)
2 3 4 2 24 4 L5G7
The derivatives of i/ are then
3 5B-7 Be?
_\'b_ = - ¢ sin 2g (53)
g 2 LSG7
E] 1 23 55 2
9 _ 6- — B+ > B2, ° (21— 9B + 25B?)
¢  LSG® 2 12 4
(54)
B 9 21 3 15 2
+cos2g | — (7-5B) + e — +—B-—8B
2 4 2 4
3 1 9 5 1 5 7 5
i‘ﬁz cos - 2By + | —+ —Ble?+ |{—-_"_ 8B 620052g (55)
oH LSGB 2 3 2 12 4 2
and the rate equations are (with B = 3/2 sinZ I):
dL
= _ 0 (56)
dl
1 6 5 J2e? 14
_— = — ° sin? ] sin 2 | — - sin? | (57)
G dl 8 p? 15
dH
— =0 (58)
dl
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dg 5 J? 23 55
——g:—]— 9- " sin?2l} ---4{2- " B+ —— B2
dl p? 2 pt 6 36
(59)
e? 25, B of 7 B 5
+ — [7-3B+ — B + cos2g| — (7-5B) + e — + — - — B
4 3 6 4 2 4
dh Pesl|3 5 1 s 7 s
——=—Lcosl——cos—————3+ — +— Ble2+| — - —B e2cos2g
dl p? pt 2 9 6 36 12 6
(60)

18
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V. EQUATIONS FOR THE OSCULATING ELEMENTS a, ¢, I, w, Q

Since the osculating elements are simply related to the Delaunay variables (see Section III), it is

merely a matter of direct substitution to obtain the corresponding rate equations.

Before writing these, however, it is pertinent to note that, for second-order rates, the substitution

procedure is valid. Consider, for example, a function y = f(x) of a slowly varying variable x with periodic

part x, of the form

x=;+€x +€2u
x =€)
Then
P (T 2 1wy 2.2
y = fx) + f'(x)(ex, + €“u ) + — f"(x) €e*x* +
p P 5 P
and

y - 1) + -; G D)

in which [x}%] is the average of xg over one period and is a function of x. It follows then that
0

l > 1 - =
y = f'(x)x + — 2 [f" (x) (x;f) ] x + -
2 0

= f @ x+ gk ed . (61)

- @

through second-order terms in € provided g(x) is not of order 1/ €.

! 19
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Assuming, therefore, that direct substitution is pemissible, the desired second-order rate equations

are

da
— =0 (62)
dl
de 5 J2 14
——e—=-———e(1—e2)sin2lsin2a) — - sin?] (63)
dl 8 p? 15
il 5 J? 14
— - =1 e24in 2/ sin 2w |— - sin?l (64)
dl 16 p* 15
dw 5 J? 23
—i)=—]— 2 - = sin?21) - ——{2- = sin21
. p? 2 p* 4
55 2 9 75
+—sin41+—e— 7 - = sin?l+ — sin?1 (65)
16 4 2 4
cos 2w 15 45
+ ° 7 - == sin271) sin27 + e2 [ 7 + 5sin?l- — sin?]
4 2 4

20
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2 I |3 5 1 5
_;’_C()—S————sulzl-:, —+—-sin21
p? 2 6 6 24
7 5
+ [— = = sin?1
12 4

21

e

2

cos 2w

(66)
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VI. COMPARISON WITH PREVIOUSLY PUBLISHED RESULTS

In (5), Petty and Breakwell develop formulas comparable to those listed in Eqs. (62) to (66). The
referenced formulas, however, refer to variables associated with a reference plane somewhat different from
the osculating plane, and, furthermore, the derivatives are given with respect to true anomaly rather than
mean anomaly. In spite of these differences, the resulting rate formulas coincide very closely with the

present results.

In fact, comparing the two sets of equations term by term shows that dI/dl agrees exactly; d()/dl
agrees except for one term, namely the 5/6 sin2] term in (66), which is given as 13/6 sin?] in Ref. 5; dow/d!

does not agree except in form; de/dl does not agree.

Whe ther the two methods should agree to second order in J is not clear. However, the present

formulas have been reviewed very thoroughly, and hopefully have no errors due to incorrect manipulation.

Actually, the de/dl and dI/dl equations are easily checked against each other, since

de G dG

dl eL? dl
and

dl H dG

dl G%sinl di
Thus

de 1-e2 sinl dl

which checks for the present results, but not for Ref. 5.

22
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Vil. COMPARISON WITH NUMERICAL CHECK

To compute the averaged orbital elements to the accuracy required for checking Egs. (62) to (66) to
order J2 is a touchy business at best. In any numerical example, the integration errors due to truncation and
roundoff limit the precision of the computation. On the other hand, the scaling is constrained by the size of
the first-order short-period fluctuations, so that it does not help matters to magnify the perturbing forces

beyond a certain amount.

Therefore, only a token numerical check was attempted. Using a 7094 computer, the equations of
motion for an Earth satellite perturbed only by the /-term were integrated for 30 days (about 360 periods).
The value of / was taken as 0.00162345. The orbital semimajor axis was 7985 km, giving a period of 1 hr
58 min.

To obtain the averages of inclination and eccentricity, these quantities were first graphed for one
complete period at the start and one complete period at the end of the orbit as shown in Figs. 1 and 2. Then,

using points read off the graphss, the averages were computed by Simpson’s rule. The results are shown in

the table:

Differences x 104
0-day 30-day
Computed Theoretical
e 0.12314428 0.12310912 -0.3516 -0.2463
I, deg 54.083031 54.083434 +4.03 +1.28

In reading the graphs, the fifth decimal place in eccentricity and the fourth place in inclination are question-
able. Thus, the differences are questionable even in the first digit indicated. It can be concluded, only
therefore, that the computation is compatible with the theory —a result which is all that could be hoped for
without a great deal more effort. The theoretical values of the differences shown above are obtained by the

method described in the Appendix.

5 For the actual computation the graphs were scaled several times larger than those shown.

23
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Fig. 1. Earth-satellite orbit: variation of osculating inclination over one
orbital period, initially and after 30 days
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VIIl.  CONCLUSIONS

The second-order long-period and secular terms in the rates of the osculating elements of the orbit
of the satellite of an oblate planet have been computed by the method of averages. The derived formulas are
valid for all eccentricity and all inclination. Furthermore, the differential equation is satisfied to second

order uniformly in time.

The results are applicable to the study of satellite lifetimes for which short-period terms are not
pertinent. In particular, by combining these formulas with first-order rate terms in the higher-order harmonics
and third-body terms, it should be possible to construct an accurate lifetime computer program. In such a

program for a lunar satellite, for example, it would be possible to use an integration step size of the order

of a day.

Expansion of the present results to include second-order short-period terms is a matter of some
effort but is certainly feasible. The method could also be applied to other harmonics and to third-body

perturbations. On the other hand, application to terms of third order and higher, though possible, appears to

be too involved to be worth while.

One of the strong points of the method of averages, as opposed, say, to the von Zeipel method, is
that the results are represented in terms of familiar variables. There is no succession of transformations or

use of auxiliary planes or other devices to distract the user from the basic quantities in which he is

interested.

No attempt has been made in the present paper to integrate the rate equations or to discuss the
behavior of the solution. Sufficient analysis of this type has already appeared in the literature, e.g., Ref. 5.
Furthermore, in any application, there is bound to be a combination of many perturbing factors, so that an

analysis which includes only the J and J? equations would not be valid.
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NOMENCLATURE

see Eq. (36)

auxiliary function definitions implicit in Eq. (3)
see Eq. (36)

auxiliary function definition implicit in Eq. (3)
eccentricity of osculating conic

(1- GY/LY%

true anomaly

auxiliary function definitions implicit in Eq. (2)
Hamiltonian (see Eq. 15)

argument of pericenter

smoothed value of g

auxiliary function definition implicit in Eq. (2)
L(1 - 2%

smoothed value of G

longitude of ascending node of osculating ellipse
smoothed value of &

G cos |

smoothed value of H

inclination of plane of osculating orbit to equator

smoothed value of /

coefficient of second sectoral harmonic in expansion of gravity field

(see Section III)

mean anomaly

o

smoothed value of L
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NOMENCLATURE (Cont’d)

semilatus rectum

radial distance from center of mass
perturbing part of potential (see Eq. 15)
nonperiodic part of R

time (or independent variable)
potential function (see Section III)
n dependent variables (see Eq. 2)
smoothed value of xi(see Eq. 3)
functions in d. e. (Eq. 2)
nonperiodic part of X/

periodic part of Xi

integral of X{) (see Eq. 7)
functions defined in Eq. (26)
function in d. e. (Eq. 2)
nonperiodic part of yi

periodic part of ¥/

integral of Y{) (see Eq. 7)

function defined in Eq. (26)
semimajor axis of osculating ellipse
gravity constant (GM)

small parameter (see Eq. 17)

period of periodic variable

R/G® defined in Eq. (30)

defined in Eq. (41)
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APPENDIX. Integration of the Rate Equations

For purposes of numerical check, it is convenient to obtain an analytic integral of the rate equations
(Egs. 61 to 65). This is effected by the usual iterative procedure. A first-order solution of the equations,
which is easily obtained, is substituted back into the equations, which then can be integrated to yield a

second approximation.

To illustrate the procedure, consider the rate equation for e (Eq. 62). Since, in the first-order solution

of the complete system, only w and (lare not constant, it is sufficient to consider w as the only variable in

the right-hand side of Eq. (63), with

_ J 5
w=—[|2- = sin?]) ¢ (A-1)
p? 2
Substituting in Eq. (63) and integrating yields
de 5 J (1-e? 14
e __ 2 ¢ ¢ —~ _ sin?] )sin?/sin 2w (A-2)
des 8 0% (20 2 g2 ) \15
2
and
_ 5 J e(l - e2 14
e-ey = — — ( e”) — _ sin? 1 \ sin2I(cos 2w - cos 20)0) (A-3)
16 p2

5
p (2——sin2l> 15
2

This last equation serves as the basis for the theoretical value given in the numerical check. The

particular example in the text involves a net change in w of approximately 50.90 deg.

The corresponding formula for the change (in degrees) of inclination is

e cot / 180
I~ IO = - . (e - eo) (A-4)
1 - 62 7
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